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Note on "Approximation of Curves 
by Line Segments" 

By N. Ream 

The problem of obtaining a best fit of broken line segments to a curve over a 
given range has recently been investigated by Stone [1] who has prepared a general 
computer program to solve the least-squares equations. 

The problem arose previously in designing diode function-generators for analog 
computers [2], [3], [4]. If f(x) is the given curve and (Uo, UN) is the range to be fitted 
by N segments, and if f(x) may be approximated by a parabola in each segment, 
then it may be shown [4] that the unweighted least-squares fit yields the following 
equation for the breakpoints ul, - , UN-1 

rU, .UN 

(1) / {f"t(x) }0.4dx -NJ {f"()}04dx, 

and that the ordinate vj of each breakpoint is given by 

1 ATf 
UN 

- 2 
(2) j f(ij) = 12'N 2 {f"(xU) }0,2 [JU 

04 dx 

For f(x) = e`C fitted over (0, 3), equations (1) and (2) become 

(3) 1 - e04CU - ? (1 e 
N 

(4) vj- e-cui 25 e-02cui(_ e-12,)2 
48N2 

Table 1 gives values of ul and maximum error Emax computed from (3) and (4) for 
N = 2; Stone's values are shown in parentheses. Emax occurs at x 0. The table 
also gives values of the r.m.s. error R which the least-squares analysis aims to 
minimize; R is computed from the formula 

-UN 5 
(5) ~~~(UN - uo)R = (1/720N)[fU{f()}4 dx] 

which for the chosen function becomes 

(6) R = (6c)-?5Emac. 

The derivation of equations (1), (2), and (5) involves expanding f(x) in a Taylor 
series about the center of each segment and retaining the first three terms. Hence 
(i) the formulas are exact for a parabola-it follows immediately that the best fit 
to a parabola has equally-spaced breakpoints; (ii) the method fails where f"(x) = 0. 

It may be mentioned that if the "best fit" is required to minimize the maximum 
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TABLE 1 

f(x) = e-cx fitted with 2 segments over (0, 3) 

C Ut Emax R E 

0.1 1.454 (1.385) 0.00166 (0.0016) 0.00215 0.00121 ?0 
0.2 1.410 (1.400) 0.00593 (0.0059) 0.00541 0.00420 0 
0.3 1.366 (1.360) 0.0119 (0.0119) 0.00887 0.00821 ? 1 
0.4 1.322 (1.316) 0.0189 (0.0189) 0.0122 0.0127 ?0 
0.5 1.278 (1.276) 0.0265 (0.0265) 0.0153 0.0174 ? 1 
0.6 1.236 (1.235) 0.0343 (0.0344) 0.0181 0.0221 ? 1 
0.7 1.194 (1.196) 0.0420 (0.0423) 0.0205 0.0264 ?E 2 
0.8 1.153 (1.155) 0.0496 (0.0500) 0.0226 0.0305 ?- 3 
0.9 1.113 (1.116) 0.0568 (0.0574) 0.0244 0.0343 ?5 
1.0 1.074 (1.080) 0.0636 (0.0645) 0.0260 0.0377 ?7 
1.2 1.001 (1.008) 0.0758 (0.0774) 0.0283 0.0435 ?- 13 
1.5 0.900 (0.912) 0.0907 (0.0936) 0.0302 0.0500 ?- 26 

error, the breakpoints are given by equations (1) with the index 0.4 replaced by 
0.5 and f" (x) replaced by its absolute value. The maximum error E is then given by 

f 1 UN 2 

(7) E = 
-4N 0 1~~~ f"(x) lo" dx] 

For the function under discussion (7) becomes 

(8) E = 12 (1 - e-1.5c)2 

and the error 6E in E due to the approximations used in deriving (8) may be shown 
to be given by 

(9) 
5E -9E2elS5C. 

Values of E and SE are included in the table. 
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