Note on "Approximation of Curves by Line Segments"

By N. Ream

The problem of obtaining a best fit of broken line segments to a curve over a given range has recently been investigated by Stone [1] who has prepared a general computer program to solve the least-squares equations.

The problem arose previously in designing diode function-generators for analog computers [2], [3], [4]. If $f(x)$ is the given curve and (u_{0}, u_{N}) is the range to be fitted by N segments, and if $f(x)$ may be approximated by a parabola in each segment, then it may be shown [4] that the unweighted least-squares fit yields the following equation for the breakpoints u_{1}, \cdots, u_{N-1} :

$$
\begin{equation*}
\int_{u_{0}}^{u_{j}}\left\{f^{\prime \prime}(x)\right\}^{0.4} d x=\frac{j}{N} \int_{u_{0}}^{u_{N}}\left\{f^{\prime \prime}(x)\right\}^{0.4} d x \tag{1}
\end{equation*}
$$

and that the ordinate v_{j} of each breakpoint is given by

$$
\begin{equation*}
v_{j}-f\left(u_{j}\right)=-\frac{1}{12 N^{2}}\left\{f^{\prime \prime}\left(u_{j}\right)\right\}^{0.2}\left[\int_{u_{0}}^{u_{N}}\left\{f^{\prime \prime}(x)\right\}^{0.4} d x\right]^{2} . \tag{2}
\end{equation*}
$$

For $f(x)=e^{-c x}$ fitted over (0,3), equations (1) and (2) become

$$
\begin{gather*}
1-e^{-0.4 c u_{j}}=\frac{j}{N}\left(1-e^{-1.2 c}\right) \tag{3}\\
v_{j}-e^{-c u_{j}}=-\frac{25}{48 N^{2}} e^{-0.2 c u_{j}}\left(1-e^{-1.2 c}\right)^{2} . \tag{4}
\end{gather*}
$$

Table 1 gives values of u_{1} and maximum error $E_{\max }$ computed from (3) and (4) for $N=2$; Stone's values are shown in parentheses. $E_{\text {max }}$ occurs at $x=0$. The table also gives values of the r.m.s. error R which the least-squares analysis aims to minimize; R is computed from the formula

$$
\begin{equation*}
\left(u_{N}-u_{0}\right) R^{2}=\left(1 / 720 N^{4}\right)\left[\int_{u_{0}}^{u_{N}}\left\{f^{\prime \prime}(x)\right\}^{0.4} d x\right]^{5} \tag{5}
\end{equation*}
$$

which for the chosen function becomes

$$
\begin{equation*}
R=(6 c)^{-0.5} E_{\max } \tag{6}
\end{equation*}
$$

The derivation of equations (1), (2), and (5) involves expanding $f(x)$ in a Taylor series about the center of each segment and retaining the first three terms. Hence (i) the formulas are exact for a parabola-it follows immediately that the best fit to a parabola has equally-spaced breakpoints; (ii) the method fails where $f^{\prime \prime}(x)=0$.

It may be mentioned that if the "best fit" is required to minimize the maximum

Table 1
$f(x)=e^{-c x}$ fitted with 2 segments over $(0,3)$

c	u_{1}		$E_{\text {max }}$		R	E
0.1	1.454	(1.385)	0.00166	(0.0016)	0.00215	0.00121 ± 0
0.2	1.410	(1.400)	0.00593	(0.0059)	0.00541	0.00420 ± 0
0.3	1.366	(1.360)	0.0119	(0.0119)	0.00887	0.00821 ± 1
0.4	1.322	(1.316)	0.0189	(0.0189)	0.0122	0.0127 ± 0
0.5	1.278	(1.276)	0.0265	(0.0265)	0.0153	0.0174 ± 1
0.6	1.236	(1.235)	0.0343	(0.0344)	0.0181	0.0221 ± 1
0.7	1.194	(1.196)	0.0420	(0.0423)	0.0205	0.0264 ± 2
0.8	1.153	(1.155)	0.0496	(0.0500)	0.0226	0.0305 ± 3
0.9	1.113	(1.116)	0.0568	(0.0574)	0.0244	0.0343 ± 5
1.0	1.074	(1.080)	0.0636	(0.0645)	0.0260	0.0377 ± 7
1.2	1.001	(1.008)	0.0758	(0.0774)	0.0283	0.0435 ± 13
1.5	0.900	(0.912)	0.0907	(0.0936)	0.0302	0.0500 ± 26

error, the breakpoints are given by equations (1) with the index 0.4 replaced by 0.5 and $f^{\prime \prime}(x)$ replaced by its absolute value. The maximum error E is then given by

$$
\begin{equation*}
E=\left[\frac{1}{4 N} \int_{u_{0}}^{u_{N}}\left|f^{\prime \prime}(x)\right|^{0.5} d x\right]^{2} \tag{7}
\end{equation*}
$$

For the function under discussion (7) becomes

$$
\begin{equation*}
E=\frac{1}{4 N^{2}}\left(1-e^{-1.5 c}\right)^{2} \tag{8}
\end{equation*}
$$

and the error δE in E due to the approximations used in deriving (8) may be shown to be given by

$$
\begin{equation*}
\delta E \cong \frac{1}{9} E^{2} e^{1.5 c} \tag{9}
\end{equation*}
$$

Values of E and δE are included in the table.
Battersea College of Technology
London, S. W. 11
England

1. H. Stone, "Approximation of curves by line segments," Math. Comp., v. 15, 1961, p. 40-47.
2. H. Hamer, "Optimum linear-segment function generation," Trans. Amer. Inst. Elec. Engrs., v. 75, 1956, p. 518-520.
3. M. E. Fisher, "The optimum design of quarter-squares multipliers with segmented characteristics," J. Sci. Instrum., v. 34, 1957, p. 312-316.
4. N. Ream, "Approximation errors in diode function-generators," J. Electronics Control, v. 7, 1959, p. 83-96.
